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A numerical simulation of unsteady incompressible Navier-Stokes
flow in a periodically grooved channel is performed for Reynolds num-
bers A ~ 0(10%). The numerical scheme is based on finite differences
approximation with an explicit quadratic Leith-type of tempaoral dis-
cretization. Periodic self-sustained oscillatory flow is reported to occur
in the investigated flow configuration, indicating a Hopf bifurcation.
The threshold for the onset of self-sustained flow oscillations is the
critical Reynolds number 950 < R, < 1050. The numerical predictions
are in good agreement with reported spectral element method
solutions, demonstrating the accuracy and efficiency of the present
method. € 1993 Academic Press, Inc.

1. INTRODUCTION

Cavity flows and flows in grooved channels present a
wide variety of problems of interest to both theoretical and
computational dynamicists. The most striking feature of
these flows, under certain flow conditions, is their unsteadi-
ness. Periodic self-sustained oscillations have been observed
as a result of {luid-dynamic instability, fluid-resonance, or
elastic displacement of solid boundaries, see, e.g., Rethman
and Saberky [14], Sarohia [18], Rockwell and Naudasher
[17], Rockwell and Knisely [167]. Problems of this nature
may be present in a wide class of relevant engineering
applications ranging from wind tunnels with slotted walls
(see King er al. [10]), to gasdynamic lasers or the cooling
of electronic components, see, e.g., Sparrow et al. [20].

Steady laminar cavity flows have been widely investigated
and used as test cases for validating incompressible flow
algorithms, see, e.g., Burggraf [2], Pan and Acrivos [13],
and Ghia et ol [7] However, the inherent difficulty
to obtain accurate numerical solutions of unsteady
Navier—Stokes flows explains the scarcity of numerical
studies aiming to identify the flow mechanisms responsible
for fluid-dynamic excitation and self-sustained oscillations.
The physical issue is very complex due to the interaction of
several coexisting mechanisms such as: leading-edge inter-
action, Biot-Savart induction, or upstream pressure waves

(feedback condition) and the selective amplification of
vorticity fluctuations in the cavity shear layer (see, e.g.,
Rockwell [15]). Simplified models based in shear layer
considerations have been formulated aiming to predict the
frequencies of the oscillations. Although these models have
proved reasonable success in predicting some characteristics
of the organized flow oscillations, they constitute incom-
plete analyses, neglecting the role of important mechanisms,
such as the recirculating flow field inside the cavity and the
interaction with the main flow.

In order to be able to provide a complete understanding
of the aforementioned flow behavior, accurate direct
numerical simulations of the full Navier-Stokes equations
must be performed. Fortunately, the increase of computing
power has made possible the numerical investigation of the
amazing dynamical features exhibited by the unsteady
Navier-Stokes equations. Fortin er af. [5] presented the
transition from a steady solution to chaotic flow and the
presence of strange attractors in a two-dimensional cascade
flow. Gustafson and Halasi [9] and, more recently,
Goodrich er al. [8] investigated the occurrence of a Hopf
bifurcation in a lid driven cavity, using a high-order finite
differences method. They have provided detailed informa-
tion about how to extract qualitative properties from the
solution of time-dependent differential equations. A similar
study was performed by Shen [ 19], following the methodol-
ogy described in [8], using a spectral method. However, a
different cavity aspect ratio was considered. In the above
cited work, the authors have dedicated strong elforts to
show that the periodic solutions obtained were not merely
artifacts of the numerical approximation. With this goal
in mind, it seemed ostensibly adequate to pursue a direct
comparison between solutions provided by two different
numerical formulations: high-order finite differences and
spectral methods. So, we refer to the work of Ghaddar et al.
[6] who investigated the presence of self-sustained flow
oscillations in periodically grooved channels, using a spec-
tral element method. In the present work an explicit quad-
ratic Leith-type of temporal discretization (see Leonard
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[11]) was used together with 106 x 84 mesh nodes. The
selected grooved channel geometrical flow configuration
and the Reynolds number equal to 1200 were the same as
those reported in [6]. It is our purpose to continue the
study of Ghaddar et al. [6] by further addressing the ques-
tion of whether the selection of the temporal and convective
discretization schemes precludes the possibility of using
numerical predictions to extract substantial insight about
non-linear flows. In Section 2, the solution algorithm used
for the computations reported in this paper is briefly
described. In Section 3, the numerical solution of a decaying
Tollmien-Schlichting wave in a plane channel as well as the
onset of self-sustained oscillations in a grooved channel are
presented. This is followed by a detailed analysis of the
grooved channel flow structure at R=1200. Finally,
Section 4 provides the main conclusions of the present
work.

2. NUMERICAL FORMULATION

2.1. Problem Formulation and Governing Equations

The two-dimensional Navier-Stokes and continuity
equations for an incompressible viscous fluid are

1,
6_:+(V.V)v:—Vp+vV2V (l)

Vov=0 2)

for v=(u, v), where u and v are the velocity components in
the x and y directions respectively, in a Cartesian reference
frame, p is the ratio of pressure to constant density, v is the
kinematic viscosity, and ¢ is time. Envisaging a finite volume
formulation, Eq. (1) may be expressed in a conservative
form given by

qf’: + (ué)x + (Ugﬁ)y =—D + v(¢xx + ¢yy)' (3)

is required is that of the periodically grooved channel flow,
proposed by Ghaddar ef al. [6] (see Fig. 1). The channel is
assumed to be infinite in the extent of the streamwise x
direction and the flow is taken as independent of the
spanwise co-ordinate. The channel half width A and the
velocity scale 3u,, where uy is the cross-channel average
velocity, are used to non-dimensionalize lengths and
velocities, respectively.

2.2. Discretization Schemes

The numerical approach described by the finite-volume
method is used to discretize the governing equations on a
staggered grid system, as shown in Fig. 2a. An explicit
quadratic Leith-type of temporal discretization was chosen
because of its third-order accuracy. This scheme was
proposed by Leonard [11] and it is known as the
QUICKEST scheme. Very few multidimensional fluid flow
problems have been predicted using this scheme (see Davies
and Moore [4]), therefore a brief derivation is outlined in
this section.

Equation (3) is integrated over a time increment A4¢ and
over the control volume v surrounding a grid node. The first
term yields

fur L ¢, dvdt= fj:; .[:/; (¢" ' — ¢"™) dE dn

=v(@ g, 4)

where ¢ stands for the mean values in the control volume.
Considering, for the sake of simplicity, a uniformly spaced
mesh in both co-ordinate directions and, further, assuming
that the dependent variable is defined in a local reference
frame (£, ) by a quadratic function,

p=c +c ¢+t Fentesy+egln, (5)

the mean values § may be obtained as
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FIG. 1.

Geometrical flow configuration.
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FIG. 2. (a) 13-point finite differences molecule. (b} Explicit quadratic
Leith-type of interpolation.

and Eq. (4) appears as

2

Jlr+dljv¢,dvdt=v[( e )+%( a

—€3)
4
+l (crt! - c;)]. (7)

However, ¢, = 3(8°¢/0¢) and ¢5 = £(8%¢/0n?), yielding

Ax r+ 1 n _d_x2 E @
BT I I e, A’[az(acl)} (8a)
Ayl 2 2¢
12 (5" —e3)= [az(é‘n )} (8b)

The terms (8/3¢)(8%¢/05%) and {(3/31Xd°¢/dn") may be
obtained by taking the second derivative of Eq. (3) and
neglecting fourth-order derivatives:

Q(azqﬁ) [ u¢5) [a(vai)}
ar\ac?)= a2 |7 a2
o (ug))
il ou
2¢)~ [a(uw A [a(um]
at (an = oail e | Pl on
& [0%(vg)
_@_'1[ oy’ ] 90)
So Eq. (8a) becomes
Ax + n
H( l_6’3)
3 ﬁ 82(u¢) P+ 172,
"24‘”[ R ],
4>
= = S AM2Aesw)s 1= 2Aesu)iip] (10)

and we have a similar expression for Eq. (8b). Replacing ¢,,
s, and c; by their values, as functions of the dependent
variables in the (£, #) referential, we obtain

Jrr+drj¢dv t—V{ el g _[“;z

X{C,+]/2 ,CURVHUZJ
- lel,'ZJCURVr 172, J)

4y?
+ EYY (Cijurp CURVE 1

Cijmin CURV;jlﬂ)} }, (11)

where C, ;5 ;412 stand for the Courant numbers, e.g.,
C,"+ s =Uis 1y {lt/A?c, and CURVY, ., |, denote finite
differences approximations to a second derivative:

CURVL v ={d;_1, j+¢i+1 j*2¢f‘j)/£’x2 (12a)
CURV} L a={di o1+ 0,41 =26, )/4y" (12b)

The finite-differences counterpart of the convection and
diffusion terms is evaluated as

f““j( 2¢)d dr

t+ At a¢, i+ 1/2,f
:j! [ué—v&} = de

i—1/2.F

(up)

(13)
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and the first term in Eq. (13) may be written as
[+ At e U2 r4 Ade
eyt d= |l o dr

_L“' [l (14)

For conciseness, only the convective flux at the (i + 1, /)
control volume face is discretized, considering u,, ,/, ,>0;
see Fig. 2b. Thus, replacing the temporal integration by
Lagrangian integrals,

A

[ el ai= [ B S @ (15)

where AL =[], u;y\pn,di=C,, ;4% and evaluating

the mean value ¢ at the (i+ 1/2,/) control volume face,
P=c,+ & + 187+ (es/12) Ay?, yields

[ taen v ae

¢ C3 c Axf2
=.of [c‘i’ + 222 a)? é']
2 3 12 Axf2—Ciz 2, jAx

(16)

The coefficients ¢, ¢,, ¢4, and ¢s are obtained from the
quadratic function (5), at time ¢, in the referential (&, #).

The convective fluxes at the remaining faces (i — 4, /) and
(i,j £ 3) are discretized similarly. If ;. |, ; <0, the referen-
tial (¢, n) will be located at the {i + 1, j) grid node. A similar
procedure is followed for the diffusion fluxes. The mean
value of the diffusive unit flux at the contrel volume
face (i+3,j) is given, in the Lagrangian space, by
0/dE" = ¢y + 205 ¢, leading to:

-~

1+ dr o
J [v —Q:] o dt
: 08 i+ 12,

@&y 34
= i,,d (lé’
J.D Hiy/2.; ac

Axf2

¥ ,
=[ (e2¢ +C3if’2)] .
LNy Ax/2— Craip jdx

The explicit finite differences are obtained by rearranging
the resulting finite differences expressions from Egs. (16)
and (17), adding Eq. (11) and the explicit counterpart of
source terms. Thus, the dependent variable at the (n+ 1)
time step, for each control volume, is obtained from

(17)

1
= A Fis = Fiyap, +F_ip

=~ Fieipt R+ 8, (18)

where the fluxes, say, eg, F., ., are given by
Fi+l,t’2,j= ‘1”1 + W2+ '{13:
R
¥ =wC;, 12,5 A [(‘ﬁ_ti;z‘&)

{19a)
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where o= (Ci+1,f2,j+ 1Ciy 1/2.jr)/2>ﬁ= (Cis 12,5 ICi+1,‘2.jl)/2s
and v=v dt/Ax?. The control volume face area is
represented by o and

CURV,, 125 (it @i, — 204 1,;)/41-'(2 (202)
CURVs._j+ 112= (v o1 T Pivr -1~ 204 1~j)/A,V2- (20b)

Finally, the pressure gradient term is given by

At
RU:‘)Z;(AUF—I.J"piJ) (21)

and S ; are the additional source terms.

The velocity divergence for a control volume is driven
approximately to zero by adjusting the control volume
pressure. The pressure adjustment produces a corre-
sponding velocity adjustment, which for the u-velocity
component is determined, e.g, foru; , ,,, ., by

o ‘=ﬂ(P:,;’“P:’+1,;’)
i+ 1725 p Ax

(22)

foru=u*+u and p=p*+ p".

The integration of the continuity equation and its dis-
cretization using the corrected velocity field v=v*+v’
yields the fintte differences equation for the pressure
correction, resulting in the system of algebraic equations

[41{p'} = (M}, (23)
where [ 4] is the coefficients matrix and {M} denotes the
out-of-balance mass source terms in each control volume.
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The system of equations is solved ieratively, using the
strong implicit method, see Stone [217] and Azcvedo et
al. [1].

A von Neumann stability analysis was conducted by
Leonard [11] for the ong-dimensional finite differences
equation, showing a considerable improvement over other
explicit methods, namely a significant stable region in the
range 1 < C<2 for finite y. However, due to accuracy
requirements, all calculations were performed for C < 1.

2.3. Numerical Algorithm and Boundary Conditions

For each time step the calculations start with the explicit
solution of the streamwise and normal momentum equa-
tions, allowing the calculation of «* and v* at each control
volume. This is followed by the iterative solution_of the
pressure correction equation (23), updating the velocity and
pressure fields, v=v* + v and p= p* + p’.

The boundary conditions {see Fig. 1) for the velocity v are

vix, y, t)=0, on ADand BC,

vix+ L, y, t)=v({x, y, 1), on ABand CD,

while for the pressure we impose that

plx, y, ty=—B{N)x+ p'(x, y, 1)
plx+ L,y ty=p'(x,p 1), on ABand CD,

where fi(7) is the driving force for the fiow.

3. RESULTS

3.1. Plane Poiseuille Flow

A strong interaction between plane channel and shear
layer instabilities is expected to occur in the periodically
grooved channel flow under consideration. As stated by
Ghaddar er al. [6], the occurring instability process
mvolves the interaction of a shear layer and a
Tollmien-Schlichting wave. Therefore, accurate solution of
the plane Poiseuille problem is 2 minimum requirement for
any numerical scheme purporting to simulate the full
grooved channel flow.

The grooved channel geometry reduces to plane channel
flow in the limit 4 — 0, see Fig. 1. The linear stability
analysis of plane channel flow with respect to infinitesimal
disturbances of the harmonic form,

vix, p, t)=Re [ () exp i{ax — 2nw, t) | expla, t), (24)
leads to a linear ordinary fourth-order differential equation
for the amplitude function #(y), known as the Orr-
Sommerfeld equation. The sclution of this egquation,

coupled with the appropriate boundary conditions for ¥( y),
yields a characteristic equation,

Plw,,0,,a, R)=0, (25)
connecting the frequency ,, the amplification (or
damping) rate o,, and the wavenumber o, defining an
eigenvalue problem, where R stands for the Reynolds
number.

Our first goal is to test the performance of the present
algorithm by direct simulation of the full Navier-Stokes
equations. So, we wiil consider the direct simulation of
Egs. {1) and (2), using as an initial condition the exact
gigenfunction for the least stable Orr—Sommerfeld mode
given by (25), superimpoesed to the basic laminar flow
1, = (1 — y?). The solution of (25) was obtained using the
semi-implicit finite differences method proposed by Cebeci
and Keller [3], yielding a stable mode with a=0.9424,
w, =0.0503, and ¢, = —0.0459, for R = 1000 (sec Fig. 3a).

The mesh used for the Navier-Stokes predictions com-
prised 62x 53 control volumes, overlapping a computa-
tional domain of length L = 6.666 and height 2H. The time
step was A+ =0.004, yielding a maximum Courant number
C = 0.05 in the solution demain. Figure 3b shows the per-
turbation streamlines at = 1/2 = 1/(2w, ). There is virtually
no change in the shape of the travelling wave, indicating an
accurate solution with low numerical dispersion. According
to Orszag [12], the plane Poiseuille flow is stable to small
disturbances for R <5772, In fact, the predicted perturba-
tion amplitude is seen to decay in time, as shown in
Fig. 4 for the v-velocity component at (x, y)=1(3.333, 0},
exhibiting a frequency w=0050 and an ampiification
{damping) rate o = —0.044. These values are in very good
agreement with both solutions obtained from the Orr-
Sommerfeld equation and from the direct simulation of a

Dl@)c
ST

FIG. 3. Perturbation streamlines for plane channel flow, at R = 100
{a) Obtained from the solution of the Grr—-Sommerfeld equation, at ¢ =0.
(b) Obtained by direct simulation of the Navier-Stokes equations, at
t=1/2
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FIG. 4. p-velocity component at (x, y) =(3.333,0) as a function of
time, obtained by direct simulation of the plane channel flow at R = 1000,

linearized form of the Navier-Stokes equations presented
by Ghaddar et al. [6]. The present calculations suggest that
our numerical algorithm is accurate enough to describe
convective instability of hydrodynamic nature.

3.2. Grooved Channel. Onset of Periodic Oscillations

In this section we carry out numerical calculations of the
full Navier-Stokes equations, for the geometry depicted in
Fig. 1, aiming to predict the critical Reynolds number R_,
corresponding to the onset of seif-sustained osciliations
in the grooved channel. The geometrical parameters
describing the computational domain correspond to
h=1.111,b=2222 and L = 6.666. The periodic llow yields
a wavenumber o= 1.885, corresponding to a two-wave
system. A mesh comprising 106 x 84 control volumes was
used in these computations, and the time step was chosen in
order to keep a low Courant number C:x0.2. Figure 5
shows the parameters w and ¢ obtained from direct simula-
tion of the full Navier-Stokes equations for ascending
Reynolds numbers. These values reveal, once again, good
agreement with linear theory results presented in [67.

As the Reynolds number is further increased, the numeri-
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FIG. 5. Stability diagram for the subcritical grooved channel Now,
parametrized by the Reynolds number R.
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FIG. 6. v-velocity compenent at {x, y)=(3.179, —0.967) as a function
of time, obtained by direct simulation of the grooved channel flow for
subcritical and supercritical Reynolds numbers R.

cal solution approaches a time asymptotic behavior,
displaying finite amplitude oscillations. In order to show
the onset of these oscillations we have plotted, in Fig. 6,
the v-velocity component at (x, )= (3.179, —0.967) as a
function of time for various Reynolds numbers in the
vicinity of R,. From these results one can qualitatively
estimate that the critical Reynolds number is approximately
950 < R. < 1050. A more precise determination of R, is
proposed in the next paragraphs.

~0.02 |

~0.04 L.
0.11 0.12

FI1G. 7. Phase plane portrait of v vs. 4 in the grooved channel at
{x, ¥)=1(3.179, —0.967), for the Reynolds number R = 1200.
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FIG. 8. Amplitude of self-sustained oscillations at (x, y)=(3.179,
—0.967), as a function of degree of criticality D .

The periodic time asymptotic behavior of the supercriti-
cal flow at R=1200 is confirmed by the cyclic trajectory
drawn in the phase space (see Fig. 7), denoting a periodic
attractor. The frequency of the limit cycles is independent
of the degree of criticality D.=(R— R.) within the
investigated range. Table T lists the computed frequencies
for various supercritical flow Reynolds numbers. The
predicted parameters follow the tendency indicated by the
subcritical flow simulations.

Ghaddar er al. [6] found a square-root dependency
between the oscillations amplitude and D,. This behavior is

TABLEI

Computed Frequencies for Various Supercritical Flow
Reynolds Numbers R

R w
1050 0.131
1200 0.132
1300 0.132

associated with a regular Hopf bifurcation. A pointwise
amplitude parameter 4,=max, |5, —t,|, where an overbar
denotes a time-averaged quantity, was evaluated from the
predictions for each Reynolds number investigated. A least-
squares fit on In(4,)=a, In(D,) + a, was also performed
for the different Reynolds numbers, as shown in Fig 8.
Assuming R, = 1030, the results yielded a, = 048437 and
a,=—23593939 with the best correlation coefficient
r=099999. These values suggest that the onset of self-
sustained oscillations occur at R, = 1030. A slightly different
procedure was followed in [6]. They have estimated
R,=975 from the behavior of the oscillations amplitude
levels. For R,=975 the parameter a, became equal to
a,=048275 with a correlation coefficient r=0.99961.
Unfortunately it was not possible to compare the oscilla-
tions amplitude levels predicted by the two methods, since

FIG. 9. Portraits of flow streamlines during a complete time cycle, at R=1200: (a)r=0; (b) t=1/5; (¢) +=27/5: (d) 1 =31/5: (e) t=a1/3; ([} 1=
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the location of the monitor point was not given. The
observed difference between the predicted values of R,
should be attributed to the adopted strategy to estimate the
onset of self-sustained oscillations rather than to numerical
discrepancies. The accuracy of the above results is therefore
comparable with spectral solutions.

It is well known that grid spacing and time increments are
influencing parameters on solution accuracy; see, e.g.,
Goodrich et al. [8]. For R=1200 several tests were con-
ducted in order to evaluate the effectiveness of the numerical
scheme. The calculations were performed using three dif-
ferent computational meshes, keeping a maximum Courant
number of approximately C=0.2, aiming to select the
optimum grid for further computations. The selected grids
comprised 53 x 42, 106 x 84, and 120 x 92 control volumes.
The predictions obtained with the coarser grid left
unanswered the question of whether a stable state dis-
playing finite amplitude periodic oscillations or a steady
solution exists, for R=1200. The amplitude of the self-
sustained oscillations, after attaining an apparent stable
state, was slightly damped with time although the frequency
of the oscillations remained equal to w = 0.135. The resuits
obtained using 106 x 84 control volumes clearly show that
an asymptotic state has been reached and that this
asymptotic state is indeed periodic. Power spectral analysis
of the instantaneous velocity components over a large num-

ber of cycles provided the information on the oscillation fre-
quency w =10.132. Calculations over a few cycles, obtained
using the finer computationai grid comprising 120 x 92 con-
trol volumes, denoted that the oscillation frequency was in
fact equal to @ =0.132. Furthermore, the time increment
was halved, yielding a maximum Courant number Cx0.1.
The frequency of the oscillations remained equal to
w=0.132, indicating that the numerical solution is not
affected by any further change in time or grid refinements.

3.3. Grooved Channel, Flow Structure

Detailed predictions of the flow for R=1200 will be
presented in this section for comparison with spectral solu-
tions [6] and also to provide the flow structure and the
mechanics of well-established self-sustained oscillations.

Dynamical characteristics will be discussed in terms
of instantaneous streamlines, perturbation streamlines,
pressure and vorticity contours, during a complete time
cycle. Figure 9 shows the flow streamlines displaying the
dynamics of the recirculation eddies. Starting at the instant
when the primary vortex occupies the whole cavity, at
t=1/5 a secondary vortex is seen to be egjected from the
separation edge. Then, this vortex grows by the entrainment
of fluid promoted on the shear layer and travels
downstream (f =31/5). For 1 =41/5, the coalescence of the

FIG. 10. Portraits of vorticity contours during a complete time cycle, at R=1200: (a}r=0; (b} 1 =1/5; (¢) r=2¢/5; (d) t = 31/5; (e} i =4/5; ([} t ==
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F1G. 12. Portraits of perturbation sireamlines during a complete time cycle, a1 R =1200: (a) r=0; (b) r =1/5; {¢) 1 = 2¢/5; {d) t = 31/5; () 1 = 41/5;
(fyr=r1.
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FIG. 13. Time-averaged perturbation kinetic energy surface plot, at R = 1200.

secondary vortex with the main vortex is seen to occur, The
motion of the primary vortex strongly suggests that the
process proceeds leading to vortex shedding {r=3t/5 to
t =41/5). These observations are distinctly corroborated by
Fig. 10, where vortex shedding, on the downstream edge, is
clearly observed from ¢ = 31/5 to r =41/5. A certain amount
of vorticity is therefore, periodically shed, travelling
downstream. Vortex rollup is also noticeable being, in con-
junction with the pressure signature on the cavity edge (see
Fig. 11), an indubitable indication of the flapping behavior
associated with Kelvin—Helmholtz instability.

Another feature of the flow under consideration may be
enhanced by plotting the perturbation streamlines, as
shown in Fig. 12. These sequential portraits reveal the
presence of a travelling wave in the grooved channel, driven
by the above mentioned vortex shedding, which is in
accordance to previous work [6]. The remarkable resem-
blance to a Tollmien—Schlichting wave (cf. Fig. 3) seems to
indicate that this kind of instability, characteristic of plane
channel flow, is still present in the grooved channel,
although somehow modified due to the need of adaptation
to a more complex geometry. The vortical structures are
now clearly seen to travel over the cavity, impinging on the
downstream edge.

Figure 13 shows the perturbation kinetic energy surface

plot obtained by time-averaged instantaneous velocity fluc-
tuations (24 '2). The figure highlights the role of the
shear layer and the dramatic effect of the presence of the
downstream groove corner, providing further amplification
of the enhanced coherent disturbances.

4. CONCLUSIONS

A direct numerical simulation of incompressible
moderate Reynolds number flow in a periodically grooved
channel was performed, using finite difference formulation,
together with an explicit quadratic Leith-type of temporal
discretization. The problem of the decaying of a
Tollmien—Schlichting wave in a plane channel, for a
Reynolds number R =1000, was previously considered in
order to investigate the effectiveness of the numerical
scheme.

The presented flow solutions have been carefully
compared with spectral element predictions of the same
flow problem and later used in a gualitative study of the
properties exhibited by the dynamical system under con-
sideration. The main conclusions of the present work may
be summarized as follows:

(a) The finite differences method outlined in this work
have demonstrated robustness and comparable accuracy to
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spectral element method solutions, for direct numerical
simulation of R ~ O(10°) flows;

(b} For the investigated grooved channel flow, transi-
tion from a steady state to a stable osciilatory regime is seen
to occur at a critical Reynolds number of approximately
950 < R, < 1050. Moreover, the good agreement between
the present predictions and spectral solutions should be
ample proof that the periodic self-sustained oscillatory flow
is not a consequence of numerical artifacts.
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